
By P. C. Mahalanobis, C. R. Rao
ISBN-10: 1483231607
ISBN-13: 9781483231600
Read Online or Download Contributions to Statistics PDF
Best mathematics_1 books
Pi und Co.: Kaleidoskop der Mathematik (German Edition)
Mathematik ist eine vielseitige und lebendige Wissenschaft. Von den großen Themen wie Zahlen, Unendlichkeiten, Dimensionen und Wahrscheinlichkeiten spannen die Autoren einen Bogen zu den aktuellen mathematischen Anwendungen in der Logistik, der Finanzwelt, der Kryptographie, der Medizin und anderen Gebieten.
- Discrete Mathematics Using Latin Squares
- Analytic Properties of Feynman Diagrams in Quantum Field Theory
- Homogeneous structures on Riemannian manifolds
- Le vite de’ matematici: Edizione annotata e commentata della parte medievale e rinascimentale
Extra info for Contributions to Statistics
Sample text
4. Further generalizations. 3 can be generaUzed to lattice sampling of the third and higher dimension in a perfectly straightforward manner. EEFEBENOES B R Y A K T , E . C , H A B T L B Y , H . O . , and J E S S E N , R . J . ( 1 9 6 0 ) : tion. J, Amer. Stat. , 55, 105-124. F R A Í Í K B L , L . R . and STOCK, J . S. (1942) : 87, Design and estimation in two-way stratificii- On the sample survey of unemployment. J. Amer. Stat. , 77-80. (GOODMAN, R . and K I S H , L . (1950) : Stat. , 45, 350-372.
In unvollständiger Blöcken. » Fakultät. Partial geometries and partially balanced designs. Ann. Math. , 83, (1963) : Strongly regular graphs, partial geometries and partially balanced designs. sity of North Carolina, Institute of Statistics, Mimeo Series No. 358. Bose, R . C . and C l a t w o r t h y , W . H . , 26, 212-232. Some classes of partially balanced designs. 1206. Univer Ann. Math. B o s e , R . C . and C o n n o r W . S . (1952): Combinatorial properties of group divisible incomplete block designs.
Through any point Ρ not lying on a line I, there pass exactly t hues inter COMBINATORIAL PROPERTIES OF PBIB DESIGNS 39 I t is easy to show that the number of points v, and the number of hues 6 in a partial geometry (r, t) are given by V = k[(r-l){k-l)+t]lt ... 1) b = r[(r-l)(k-l)+t]lt ... 2) (b) Partial geometries are isomorphic with a class of P B I B designs. Points of the geometry may be caUed treatments and lines of the geometry may be caUed blocks. The relation of incidence now becomes the relation of a treatment being contained in a block.