# Download A Course of Mathematics for Engineers and Scientists. Volume by Brian H. Chirgwin, Charles Plumpton PDF

By Brian H. Chirgwin, Charles Plumpton

ISBN-10: 0080063888

ISBN-13: 9780080063881

Similar mathematics_1 books

Pi und Co.: Kaleidoskop der Mathematik (German Edition)

Mathematik ist eine vielseitige und lebendige Wissenschaft. Von den großen Themen wie Zahlen, Unendlichkeiten, Dimensionen und Wahrscheinlichkeiten spannen die Autoren einen Bogen zu den aktuellen mathematischen Anwendungen in der Logistik, der Finanzwelt, der Kryptographie, der Medizin und anderen Gebieten.

Additional resources for A Course of Mathematics for Engineers and Scientists. Volume 1

Sample text

Dy dx dx = 1. 17) 42 A COTJBSE OF M A T H E M A T I C S If y — log x, b y definition x = ey a n d hence dx/dy Therefore eqn. 17) gives = ey = x. 18) ——v(log 6 x) = — . 19) aï"*"»]-^ Examples, (i) D [log (x* + a*)] (ii) (iii) pxv (a* + a») D [log (a;2 + a2)w] = D [Λ log (a;2 -f a2)] D log a; + « 2nx (a;2 + a2) D [log (x + a) — log (s — a)] 1 a + a 1 x —a (iv) Express d2x/dy2 in terms of dy/dx, Since d2y/dx2. -2a da; _ 1 di/ dy_ ' dx then by the chain rule. d^__d_ / 1 m dy2 ~ dy I dy \ dx d 2x •'•oV - / — da; I dy \~dx~ d'y da;2 da; dy dx We now find lim logo;.

N -f- βη + γη, where α, β and γ are the non-zero roots of the cubic equation xs -\- px2 -f qx -\- r = 0, show t h a t sn + psn_x + osn_2 -f rs TO _ 3 = 0. Hence express (i) a 4 -f β 4 + y 4 , (ii) a - 3 + β~ 3 + 7~z m terms of p, q, r. 10. By means of a sketch-graph, or otherwise, show t h a t the equation 2x3 — éx2 -{- 1 = 0 has two positive roots and one negative root. Calculate the negative root and the larger positive root correct to three significant figures. 11. By the substitution y = l/x find the equation in y whose roots are t h e reciprocals of the roots α, β, y of the equation xz -f- px2 + qx + T = 0 .

M2(m2 — 22) (m2 - 42) ... [m2 — (2p — 2) 2 ], /(2p + i)(0) = m(m2 - l2) (m2 - 32) ... [m2 — (2p - l) 2 ]. 58 A C O U R S E OF MATHEMATICS Exercises 2:7 x 4 1. If y = e~ cos x, prove that d i//da;4 + 4y = 0. 2. If y = (x3 - 3x2)e2x, find d«y/dxQ. 3. If x(l — x) O2y + 2«/ = 0, prove that »(1 - x) On+2y + n(l - 2x) T>n+1y = (n + 1) (n - 2) Dny. 4. If ^ = sinh (m sinh _1 ic), and yn = dny/dxnf prove that (1 + x2)yn+2 + (2n + l)«y w + i + (n· - m2)yn = 0. 5. Prove that Bn+1(xy) = (n + 1) Dwy + zD w + 1 2/.